Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 852, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582037

RESUMO

The 26S proteasome, in charge of intracellular protein degradation, plays significant roles in the modulation of various cellular activities as well as in the interplay between virus and host. However, studies about the relationship between 26S proteasome and classical swine fever virus (CSFV) is limited up to now. MG132 is a proteasome inhibitor and has been extensively used in studies about replication of many viruses. Herein, we investigated the role of MG132 in CSFV replication and results showed that MG132 significantly decreased virus titers and viral RNA copies in CSFV-infected PK-15 cells. Further studies demonstrated that MG132 upregulated the expression of several interferon-stimulated genes (ISGs), in CSFV-infected cells. Since the activation of ISGs is controlled by the JAK-STAT signal pathway, we next examined the effect of MG132 on the expression and localization of key molecular STAT1 in the infected cells using Western blot and confocal laser scanning microscopy, respectively. Results showed that CSFV infection and viral NS4A protein decreased the protein level of STAT1, and MG132 promoted the accumulation of STAT1 in the nucleus of cells adjacent to the CSFV-infected cells. Besides, MG132 did not affect the expressions of IFN-α, STAT1, Mx1, OAS1, and PKR genes in cells without CSFV. In conclusion, we identify that MG132 significantly inhibits CSFV replication in vitro, in which the activation of the JAK-STAT pathway and the subsequent upregulation of expressions of ISGs might play significant roles, providing a potential preventive method for CSF.

2.
Virology ; 537: 74-83, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493657

RESUMO

Classical swine fever (CSF) is a major infectious disease of pigs caused by classical swine fever virus (CSFV). NS3 is one of the non-structural proteins of CSFV and plays an important role in the infection process. However, the NS3-interacting cellular proteins involved in viral replication are poorly documented. In this study, proteasome subunit beta 10 (PSMB10) was identified as a novel NS3-interacting partner using yeast two-hybrid screening of a porcine peripheral blood mononuclear cell (PBMC) cDNA library. The PSMB10-NS3 interaction was confirmed by co-immunoprecipitation, glutathione S-transferase pulldown, and laser confocal microscopy. Overexpression of PSMB10 inhibited CSFV replication. Conversely, CSFV infection inhibited PSMB10 expression. Furthermore, we demonstrated that NS3 is degraded by PSMB10 through the ubiquitin-proteasome system and that CSFV inhibits the expression of MHC class I antigen presentation-related transporter proteins, whereas PSMB10 can restore the function of MHC class I antigen presentation and inhibit CSFV proliferation.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Leucócitos Mononucleares/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Centrifugação , Imunoprecipitação , Microscopia Confocal , Ligação Proteica , Mapeamento de Interação de Proteínas , Suínos , Técnicas do Sistema de Duplo-Híbrido
3.
Artigo em Inglês | MEDLINE | ID: mdl-30013955

RESUMO

Classical swine fever virus (CSFV) is a classic Flavivirus that causes the acute, febrile, and highly contagious disease known as classical swine fever (CSF). Inflammasomes are molecular platforms that trigger the maturation of proinflammatory cytokines to engage innate immune defenses that are induced upon cellular infection or stress. However, the relationship between the inflammasome and CSFV infection has not been thoroughly characterized. To understand the function of the inflammasome response to CSFV infection, we infected porcine peripheral blood monocytes (PBMCs) with CSFV. Our results indicated that CSFV infection induced both the generation of pro-interleukin-1ß (pro-IL-1ß) and its processing in monocytes, leading to the maturation and secretion of IL-1ß through the activation of caspase 1. Moreover, CSFV infection in PBMCs induced the production and cleavage of gasdermin D (GSDMD), which is an inducer of pyroptosis. Additional studies showed that CSFV-induced IL-1ß secretion was mediated by NLRP3 and that CSFV infection could sufficiently activate the assembly of the NLRP3 inflammasome in monocytes. These results revealed that CSFV infection inhibited the expression of NLRP3, and knockdown of NLRP3 enhanced the replication of CSFV. In conclusion, these findings demonstrate that the NLRP3 inflammasome plays an important role in the innate immune response to CSFV infection.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Imunidade Inata , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Monócitos/imunologia , Monócitos/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Hidrólise , Suínos
4.
Virus Res ; 250: 37-42, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29627479

RESUMO

Classical swine fever virus (CSFV) causes a highly lethal disease in pigs, which is characterized by immunosuppression. Leukopenia is known to be a possible mechanism of immunosuppression during CSFV infection. As a new and specialized form of cell death, pyroptosis is the key response of the innate immune system to pathogens, and is widely involved in the occurrence and development of infectious diseases. However, the relationship between CSFV and pyroptosis has not been explored. In this study, we investigated the occurrence of pyroptosis in pigs following CSFV infection. According to qRT-PCR assay results, the prevalence of this virus in peripheral lymphoid organs (tonsils, lymph nodes, and spleen) was much higher than that in other organs. Severe bleeding, necrosis, and a significant reduction in lymphocytes were found in the peripheral lymphoid organs of CSFV-infected pigs based on histological examination. In-depth studies showed that an increased ratio of deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells were present in the peripheral lymphoid organs of the CSFV-infected group according to immunohistochemistry. Meanwhile, the p10 subunit and activity of caspase-1, which is a regulator of pyroptosis, the N-terminal domain of gasdermin D, which is an executor of pyroptosis, and the cleavage and secretion of IL-1b, which is a product of pyroptosis were increased in the peripheral lymphoid organs of the CSFV-infected group. Together, these results demonstrated that pyroptosis is involved in CSFV-induced cell death in vivo, which provides a new understanding of the mechanism associated with lymphocyte depletion and immunosuppression in pigs infected with this virus.


Assuntos
Vírus da Febre Suína Clássica/patogenicidade , Peste Suína Clássica/patologia , Leucopenia/veterinária , Linfonodos/virologia , Piroptose , Animais , Caspase 1/metabolismo , Peste Suína Clássica/imunologia , Hospedeiro Imunocomprometido , Interleucina-1beta/imunologia , Leucócitos Mononucleares/virologia , Leucopenia/imunologia , Leucopenia/virologia , Linfonodos/citologia , Suínos
5.
Front Microbiol ; 8: 2129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163417

RESUMO

Classical swine fever (CSF) is an OIE-listed, highly contagious animal disease caused by classical swine fever virus (CSFV). The endoplasmic reticulum (ER) is an organelle in which the replication of many RNA viruses takes place. During viral infection, a series of events elicited in cells can destroy the ER homeostasis that cause ER stress and induce an unfolded protein response (UPR). In this study, we demonstrate that ER stress was induced during CSFV infection as several UPR-responsive elements such as XBP1(s), GRP78 and CHOP were up-regulated. Specifically, CSFV transiently activated IRE1 pathway at the initial stage of infection but rapidly switched off, likely due to the reduction in cytoplasm Ca2+ after viral incubation. Additionally, our data show that the ER stress induced by CSFV can promote CSFV production, which the IRE1 pathway play an important role in it. Evidence of ER stress in vivo was also confirmed by the marked elevation of GRP78 in CSFV-infected pig PBMC and tissues. Collectively, these data indicate that the ER stress was induced upon CSFV infection and that the activation of the IRE1 pathway benefits CSFV replication.

6.
Sci Rep ; 7(1): 13577, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051589

RESUMO

Lymphocyte depletion and immunosuppression are typical clinical characteristics of pigs infected with classical swine fever virus (CSFV). The apoptosis of virus-infected and bystander cells plays a role in the immunopathology of classical swine fever (CSF). Here, we offer the first evidence that autophagy is involved in apoptosis and death of T lymphocytes in the spleen of pigs infected with CSFV. Using immunohistochemical assays, we observed that more LC3II-positive cells appear in the T-cell zone of spleens. Spleen cell apoptosis was demonstrated using flow cytometry and TUNEL staining. Confocal immunofluorescence revealed that partial LC3II-positive cells were simultaneously TUNEL-positive. By cultivating spleen cells ex vivo, we demonstrated that the inhibition of autophagy by 3-MA treatment inhibited apoptosis and death of T lymphocytes caused by CSFV infection but did not have this effect  on B lymphocytes. Further observations demonstrated that uninfected cells in the spleen were also undergoing autophagy in vivo. In summary, these results linked autophagy with the apoptosis and cell death of splenic T cells, providing a new outlook to understand the mechanism of T lymphocyte depletion and immunosuppression during CSF.


Assuntos
Autofagia , Peste Suína Clássica/patologia , Baço/patologia , Linfócitos T/patologia , Linfócitos T/virologia , Animais , Apoptose , Morte Celular , Peste Suína Clássica/etiologia , Vírus da Febre Suína Clássica/patogenicidade , Baço/virologia , Suínos
7.
Front Microbiol ; 8: 691, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473819

RESUMO

Viruses require energy and biosynthetic precursors from host cells for replication. An understanding of the metabolic interplay between classical swine fever virus (CSFV) and host cells is important for exploring the complex pathological mechanisms of classical swine fever (CSF). In the current study, and for the first time, we utilized an approach involving gas chromatography coupled with mass spectrometry (GC-MS) to examine the metabolic profiles within PK-15 and 3D4/2 cells infected with CSFV. The differential metabolites of PK-15 cells caused by CSFV infection mainly included the decreased levels of glucose 6-phosphate [fold change (FC) = -1.94)] and glyceraldehyde-3-phosphate (FC = -1.83) during glycolysis, ribulose 5-phosphate (FC = -1.51) in the pentose phosphate pathway, guanosine (FC = -1.24) and inosine (FC = -1.16) during purine biosynthesis, but the increased levels of 2-ketoisovaleric acid (FC = 0.63) during the citrate cycle, and ornithine (FC = 0.56) and proline (FC = 0.62) during arginine and proline metabolism. However, metabolite changes caused by CSFV infection in 3D4/2 cells included the reduced glyceraldehyde-3-phosphate (FC = -0.77) and pyruvic acid (FC = -1.42) during glycolysis, 2-ketoglutaric acid (FC = -1.52) in the citrate cycle, and the elevated cytosine (FC = 2.15) during pyrimidine metabolism. Our data showed that CSFV might rebuild cellular metabolic programs, thus aiding viral replication. These findings may be important in developing targets for new biomarkers for the diagnosis and identification of enzyme inhibitors or metabolites as antiviral drugs, or screening viral gene products as vaccines.

8.
Oncotarget ; 8(24): 39382-39400, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28455958

RESUMO

Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies.


Assuntos
Apoptose , Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Animais , Linhagem Celular , Sobrevivência Celular , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Fagossomos/metabolismo , Suínos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...